Genetic Variants in DNA Double-Strand Break Repair Genes and Risk of Salivary Gland Carcinoma: A Case-Control Study
نویسندگان
چکیده
DNA double strand break (DSB) repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC). We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs) in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs) for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7)) and 0.58 (0.45-0.74, P = 2.00 × 10(-5)) respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5), n = 74), and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3), n = 123). Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.
منابع مشابه
Genetic susceptibility to renal cell carcinoma: the role of DNA double-strand break repair pathway.
Alterations in DNA repair genes have been shown to cause a reduction in host DNA repair capacity and may influence host susceptibility to carcinogenesis. The double-strand break repair is a major DNA-repair pathway. This study tested the hypothesis that common sequence variants of the double-strand break pathway genes predispose susceptible individuals to an increased risk for renal cell carcin...
متن کاملPolymorphisms in DNA double-strand break repair genes and skin cancer risk.
UV can cause a wide range of DNA lesions. UVA-induced oxidative DNA damage and blocked DNA replication by UVB-induced photoproducts can lead to double-strand breaks (DSBs). We selected 11 haplotype-tagging single nucleotide polymorphisms in three DSB repair genes XRCC2, XRCC3, and LigaseIV and evaluated their associations with skin cancer risk in a nested case-control study within the Nurses' H...
متن کاملAssociation of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population
Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...
متن کاملPolymorphisms in DNA double-strand break repair genes and breast cancer risk in the Nurses' Health Study.
Genetic polymorphisms in double-strand break repair genes may influence DNA repair capacity and, in turn, confer predisposition to breast cancer. We prospectively assessed the associations of candidate polymorphisms G31479A (R188H) in XRCC2, A4541G (5'-UTR), A17893G (IVS5-14) and C18067T (T241 M) in XRCC3, and C299T (5'-UTR) and T1977C (D501D) in Ligase IV with breast cancer risk in a nested ca...
متن کاملNonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans.
The removal or repair of DNA damage has a key role in protecting the genome of the cell from the insults of cancer-causing agents. This was originally demonstrated in individuals with the rare genetic disease xeroderma pigmentosum, the paradigm of cancer genes, and subsequently in the relationship between mismatch repair and colon cancer. Recent reports suggest that individuals with less dramat...
متن کامل